PSAM Series

PHASE SHIFTERS, ANALOG

500 to 2500 MHz / 0' to 180' and 0' to 360' / 10% Bandwidth / Voltage Controlled / SMA

Model Number	Center Frequency, fo, GHz	Phase Shift Range
PSAM-3-***B PSAM-4-***B For complete Model Nu	0.5 to 2.5 0.5 to 2.5 Imber replace *** with desired Ce	$\begin{array}{c} 180^{\circ} \text{ at } f_{0} \\ 360^{\circ} \text{ at } f_{0} \\ \\ \text{enter Frequency, } f_{o} \text{ in MHz.} \end{array}$
ackage Outline	- <u>1125</u> - <u>28.58</u> - <u>430</u> 10.92 MAX. TYP. - <u>1040</u> <u>26.42</u> - <u>2625 ⋅ 015</u> - <u>6668 ⋅ 038</u> - <u>1060</u> - <u>2642</u> - <u>2625 ⋅ 015</u> - <u>6668 ⋅ 038</u> - <u>1060</u> - <u>1060</u> - <u>2642</u> - <u>1060</u> - <u>26642</u> - <u>1060</u> - <u>26640</u> - <u>1060</u> - <u>2000</u> - <u>1060</u> - <u>10</u>	CONNECTOR, RECEPTACLE, FEMALE, SMA TYPE, MATE WITH CONNECTOR, PLUG, MALE, PER ML-C-39012, TYP, 3 PLACES

GENERAL SPECIFICATIONS

Bandwidth:	10% of f _o			
Insertion Loss:				
PSAM-3 series @ 1 GHz:	3 dB typ.			
@ 2.5 GHz:	4 dB typ.			
PSAM-4 series @ 1 GHz:	4 dB typ.			
@ 2.5 GHz:	6 dB typ.			
Modulation Rate:	1% of fo nom.			
Impedance:	50 Ω nom.			
VSWR:PSAM-3 series:	2.0:1 max.			
PSAM-4 series:	2.5:1 max.			
Input Power:	0 dBm max.*			
Control Voltage for				
full range:	0.5 to +30 Vmax.			
Connectors:	SMA Female			
Weight, nominal:	4 oz. (112 g)			
Phase Stability, typical:				
PSAM-3 series:	0.1° per °C			
PSAM-4 series:	0.2° per °C			
Operating Temp:	– 55° to +85°C			
*Unit may be operated at +10 dBm in reduced control range				
of 1.5 - 15 V. (+30 V no damage)				

OPTIONAL SPECIFICATIONS

Lower Frequencies: Flatpack Version: see PSEM series see PEF series

General Notes:

1. The PSAM series of voltage controlled analog phase shifters controls phase shift using a voltage of 0 to +30V. On PSAM-3 models the full range is from 0° to 180° and on PSAM-4 this is extended to 0° to 360° by cascading two similar 180° phase shifters.

2. Each phase shifter element employs Filmbrid[™] quadrature hybrids with matched pairs of varactor tuned LC networks acting as sliding short circuits on the outputs. The electrical length of short effectively delays the reflected signal which appears at the isolated port of each quadrature hybrid.

3. Similar phase shifters are available in a variety of packages including catalog models in flatpacks and Meri-Pacs.

4. Merrimac phase shifters are designed for high reliability and can be supplied screened to meet specific military and space applications.

15Feb96

For further information contact M ERRIM AC /41 Fairfield PL,W est Callwell,NJ,07006 / 973-575-1300 /FAX 973-575-0531